Research Publications
Pioneering cutting-edge AI exploration
Search
2025-07-10
Understanding Chain-of-Thought in LLMs through Information Theory

Large Language Models (LLMs) have shown impressive performance in complex reasoning tasks through the use of Chain-of-Thought (CoT) reasoning, allowing models to break down problems into manageable sub-tasks. However, existing CoT evaluation techniques either require annotated CoT data or fall short in accurately assessing intermediate reasoning steps, leading to high rates of false positives. In this paper, we formalize CoT reasoning in LLMs through an information-theoretic lens. Specifically, our framework quantifies the 'information-gain' at each reasoning step, enabling the identification of failure modes in LLMs without the need for expensive annotated datasets. We demonstrate the efficacy of our approach through extensive experiments on toy arithmetic, GSM8K and PRM800k datasets, where it significantly outperforms existing outcome-based methods by providing more accurate insights into model performance on individual subtasks.

Jean-Francois Ton, Muhammad Faaiz Taufiq, Yang Liu

ICML 2025
Computation and Language
2025-07-04
Dexterous Teleoperation of 20-DoF ByteDexter Hand via Human Motion Retargeting

Replicating human--level dexterity remains a fundamental robotics challenge, requiring integrated solutions from mechatronic design to the control of high degree--of--freedom (DoF) robotic hands. While imitation learning shows promise in transferring human dexterity to robots, the efficacy of trained policies relies on the quality of human demonstration data. We bridge this gap with a hand--arm teleoperation system featuring: (1) a 20--DoF linkage--driven anthropomorphic robotic hand for biomimetic dexterity, and (2) an optimization--based motion retargeting for real--time, high--fidelity reproduction of intricate human hand motions and seamless hand--arm coordination. We validate the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks and a long--horizon task requiring the organization of a cluttered makeup table randomly populated with nine objects. Experimental results demonstrate its intuitive teleoperation interface with real--time control and the ability to generate high--quality demonstration data. Please refer to the accompanying video for further details.

Ruoshi Wen, Jiajun Zhang, Guangzeng Chen, Zhongren Cui, Min Du, Yang Gou, Zhigang Han, Junkai Hu, Liqun Huang, Hao Niu, Wei Xu, Haoxiang Zhang, Zhengming Zhu, Hang Li, Zeyu Ren

arXiv
Robotics
2025-06-27
Investigating the Overlooked Hessian Structure: From CNNs to LLMs

It is well-known that the Hessian of deep loss landscape matters to optimization and generalization of deep learning. Previous studies reported a rough Hessian structure in deep learning, which consists of two components, a small number of large eigenvalues and a large number of nearly-zero eigenvalues. To the best of our knowledge, we are the first to report that a simple but overlooked power-law Hessian structure exists in well-trained deep neural networks, including Convolutional Neural Networks (CNNs) and Large Language Models (LLMs). Moreover, we provide a maximum-entropy theoretical interpretation for the power-law Hessian structure and theoretically demonstrate the existence of a robust and low-dimensional subspace of deep neural networks. Our extensive experiments using the proposed power-law spectral method demonstrate that the power-law Hessian spectra critically relate to multiple important behaviors of deep learning, including optimization, generalization, and overparameterization. Notably, we discover that the power-law Hessian structure of a given LLM can often predict generalization during training in some occasions, while conventional sharpnessbased generalization measures which often work well on CNNs largely fail as an effective generalization predictor of LLMs.

Qian-Yuan Tang, Yufei Gu, Yunfeng Cai, Mingming Sun, Ping Li, Xun Zhou, Zeke Xie

ICML 2025
Deep Learning
2025-06-26
Active Reward Modeling: Adaptive Preference Labeling for Large Language Model Alignment

Building neural reward models from human preferences is a pivotal component in reinforcement learning from human feedback (RLHF) and large language model alignment research. Given the scarcity and high cost of human annotation, how to select the most informative pairs to annotate is an essential yet challenging open problem. In this work, we highlight the insight that an ideal comparison dataset for reward modeling should balance exploration of the representation space and make informative comparisons between pairs with moderate reward differences. Technically, challenges arise in quantifying the two objectives and efficiently prioritizing the comparisons to be annotated. To address this, we propose the Fisher information-based selection strategies, adapt theories from the classical experimental design literature, and apply them to the final linear layer of the deep neural network-based reward modeling tasks. Empirically, our method demonstrates remarkable performance, high computational efficiency, and stability compared to other selection methods from deep learning and classical statistical literature across multiple open-source LLMs and datasets. Further ablation studies reveal that incorporating cross-prompt comparisons in active reward modeling significantly enhances labeling efficiency, shedding light on the potential for improved annotation strategies in RLHF. Code and embeddings to reproduce all results of this paper are available at https://github.com/YunyiShen/ARM-FI/.

Yunyi Shen, Hao Sun, Jean-Francois Ton

ICML 2025
Computation and Language
2025-06-22
How Far Is Video Generation from World Model: A Physical Law Perspective

Scaling video generation models is believed to be promising in building world models that adhere to fundamental physical laws. However, whether these models can discover physical laws purely from vision can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. We focus on the scaling behavior of training diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit “case-based” generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws.

Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, Jiashi Feng

ICML 2025
Computer Vision and Pattern Recognition
2025-06-20
Polybasic Speculative Decoding Through a Theoretical Perspective

Inference latency stands as a critical bottleneck in the large-scale deployment of Large Language Models (LLMs). Speculative decoding methods have recently shown promise in accelerating inference without compromising the output distribution. However, existing work typically relies on a dualistic draft-verify framework and lacks rigorous theoretical grounding. In this paper, we introduce a novel polybasic speculative decoding framework, underpinned by a comprehensive theoretical analysis. Specifically, we prove a fundamental theorem that characterizes the optimal inference time for multi-model speculative decoding systems, shedding light on how to extend beyond the dualistic approach to a more general polybasic paradigm. Through our theoretical investigation of multi-model token generation, we expose and optimize the interplay between model capabilities, acceptance lengths, and overall computational cost. Our framework supports both standalone implementation and integration with existing speculative techniques, leading to accelerated performance in practice. Experimental results across multiple model families demonstrate that our approach yields speedup ratios ranging from 3.31× to 4.01× for LLaMA2-Chat 7B, up to 3.87× for LLaMA3-8B, up to 4.43× for Vicuna7B and up to 3.85× for Qwen2-7B—all while preserving the original output distribution. We release our theoretical proofs and implementation code to facilitate further investigation into polybasic speculative decoding.

Ruilin Wang, Huixia Li, Yuexiao Ma, Xiawu Zheng, Fei Chao, Xuefeng Xiao, Rongrong Ji

ICML 2025
Deep Learning
2025-06-16
Robust Multi-bit Text Watermark with LLM-based Paraphrasers

We propose an imperceptible multi-bit text watermark embedded by paraphrasing with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave differently so that their paraphrasing difference reflected in the text semantics can be identified by a trained decoder. To embed our multi-bit watermark, we use two paraphrasers alternatively to encode the pre-defined binary code at the sentence level. Then we use a text classifier as the decoder to decode each bit of the watermark. Through extensive experiments, we show that our watermarks can achieve over 99.99% detection AUC with small (1.1B) text paraphrasers while keeping the semantic information of the original sentence. More importantly, our pipeline is robust under word substitution and sentence paraphrasing perturbations and generalizes well to out-of-distributional data. We also show the stealthiness of our watermark with LLM-based evaluation. We open-source the code: https://github.com/xiaojunxu/multi-bit-text-watermark.

Xiaojun Xu, Jinghan Jia, Yuanshun Yao, Yang Liu, Hang Li

ICML 2025
Artificial Intelligence
2025-06-15
Improving Zero-Shot Adversarial Robustness in Vision-Language Models by Closed-form Alignment of Adversarial Path Simplices

Vision-Language Models (VLMs) such as CLIP excel at zero-shot classification due to large-scale pre-training but are vulnerable to adversarial examples. Adversarial fine-tuning robustifies zero-shot models by aligning prediction scores of individual adversaries with their clean counterparts, which typically overlooks intermediate adversarial samples along the adversarial trajectory crossing the decision boundary. Such intermediate adversaries and their vicinity produce informative representations capturing the decision boundary in detail. They can be improved by sampling adversarial candidates from simplices formed by joining two consecutive vertices on the adversarial trajectory and their clean counterpart. However, sampling simplices for adversaries is very costly. To train robust VLM, we overcome these limitations by Taylor expansion and formulating an upper-bound of alignment loss that depends on the Jacobian/Hessian obtained at clean samples. As regions between clean and intermediate adversarial samples capture a larger decision landscape, we robustify VLM by plausible adversaries from simplices by our closed-form formulation equivalent to infinite uniform sampling of the simplex. We obtain state-of-the-art robustness across 15 datasets and diverse vision-language tasks.

Junhao Dong, Piotr Koniusz, Yifei Zhang, Hao Zhu, Weiming Liu, Xinghua Qu, Yew-Soon Ong

ICML 2025
Deep Learning
2025-06-12
Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts

Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.

Yike Yuan, Ziyu Wang, Zihao Huang, Defa Zhu, Xun Zhou, Jingyi Yu, Qiyang Min

ICML 2025
Computer Vision and Pattern Recognition
2025-06-12
Elucidating the Design Space of Multimodal Protein Language Models

Multimodal protein language models (PLMs) integrate sequence and token-based structural information, serving as a powerful foundation for protein modeling, generation, and design. However, the reliance on tokenizing 3D structures into discrete tokens causes substantial loss of fidelity about fine-grained structural details and correlations. In this paper, we systematically elucidate the design space of multimodal PLMs to overcome their limitations. We identify tokenization loss and inaccurate structure token predictions by the PLMs as major bottlenecks. To address these, our proposed design space covers improved generative modeling, structure-aware architectures and representation learning, and data exploration. Our advancements approach finer-grained supervision, demonstrating that token-based multimodal PLMs can achieve robust structural modeling. The effective design methods dramatically improve the structure generation diversity, and notably, folding abilities of our 650M model by reducing the RMSD from 5.52 to 2.36 on PDB testset, even outperforming 3B baselines and on par with the specialized folding models.

Cheng-Yen Hsieh, Xinyou Wang, Daiheng Zhang, Dongyu Xue, Fei Ye, Shujian Huang, Zaixiang Zheng, Quanquan Gu

ICML 2025
AI for Science
2025-06-11
Seedance 1.0: Exploring the Boundaries of Video Generation Models

Notable advances in diffusion modeling have propelled rapid improvements in video generation, yet current foundational model still confront critical challenges in synergistically balancing prompt following, motion plausibility, and visual quality. In this report, we introduce Seedance 1.0, a high-performance and inference-efficient video foundation generation model that integrates several core technical improvements: (i) multi-source data curation augmented with precision and meaningful video captioning, enabling comprehensive learning across diverse scenarios; (ii) an efficient pre-training paradigm that enables multiple features or functions such as interleaved multimodal positional encoding, native multi-shot generation capacity, and multi-task modeling; (iii) carefully-designed post-training optimization leveraging fine-grained supervised fine-tuning, video-specific RLHF with multi-dimensional reward mechanisms for considerable performance improvements; (iv) excellent model acceleration achieving 10× inference speedup through multi- stage distillation strategies and system-level optimizations. Seedance 1.0 can generate a 5-second video at 1080p resolution only with 41.4 seconds. Compared to state-of-the-art video generation models, Seedance 1.0 stands out with high-quality and fast video generation with superior spatiotemporal fluidity with structural stability, precise instruction adherence in complex multi-subject contexts, native multi-shot narrative coherence with consistent subject representation, and ultra-fast inference.

Seed Vision Team

arXiv
Computer Vision
2025-06-06
BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks, yet generating reliable reasoning processes remains a significant challenge. We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model incorporating latent thinking processes and evaluation signals. Within this framework, we introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps. First, it generates high-quality rationales by approximating the optimal thinking process through reinforcement learning, using a novel reward shaping mechanism. Second, it enhances the base LLM by maximizing the joint probability of rationale generation with respect to the model’s parameters. Theoretically, we demonstrate BRiTE’s convergence at a rate of 1/T with T representing the number of iterations. Empirical evaluations on math and coding benchmarks demonstrate that our approach consistently improves performance across different base models without requiring human-annotated thinking processes. In addition, BRiTE demonstrates superior performance compared to existing algorithms that bootstrap thinking processes use alternative methods such as rejection sampling, and can even match or exceed the results achieved through supervised fine-tuning with human-annotated data.

Han Zhong, Yutong Yin, Shenao Zhang, Xiaojun Xu, Yuanxin Liu, Yifei Zuo, Zhihan Liu, Boyi Liu, Sirui Zheng, Hongyi Guo, Liwei Wang, Mingyi Hong, Zhaoran Wang

ICML 2025
Machine Learning
2025-06-06
Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning

Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.

Sheng Chen, Peiyu He, Jiaxin Hu, Ziyang Liu, Yansheng Wang, Tao Xu, Chi Zhang, Chongchong Zhang, Chao An, Shiyu Cai, Duo Cao, Kangping Chen, Shuai Chu, Tianwei Chu, Mingdi Dan, Min Du, Weiwei Fang, Pengyou Fu, Junkai Hu, Xiaowei Jiang, Zhaodi Jiang, Fuxuan Li, Jun Li, Minghui Li, Mingyao Li, Yanchang Li, Zhibin Li, Guangming Liu, Kairui Liu, Lihao Liu, Weizhi Liu, Xiaoshun Liu, Yufei Liu, Yunfei Liu, Qiang Lu, Yuanfei Luo, Xiang Lv, Hongying Ma, Sai Ma, Lingxian Mi, Sha Sa, Hongxiang Shu, Lei Tian, Chengzhi Wang, Jiayu Wang, Kaijie Wang, Qingyi Wang, Renwen Wang, Tao Wang, Wei Wang, Xirui Wang, Chao Wei, Xuguang Wei, Zijun Xia, Zhaohao Xiao, Tingshuai Yan, Liyan Yang, Yifan Yang, Zhikai Yang, Zhong Yin, Li Yuan, Liuchun Yuan, Chi Zhang, Jinyang Zhang, Junhui Zhang, Linge Zhang, Zhenyi Zhang, Zheyu Zhang, Dongjie Zhu, Hang Li, Yangang Zhang

arXiv
Robotics
2025-06-05
SeedEdit 3.0: Fast and High-Quality Generative Image Editing

We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0, which significantly improves over our previous SeedEdit versions in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and reward losses. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real/synthetic image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).

Peng Wang, Yichun Shi, Xiaochen Lian, Zhonghua Zhai, Xin Xia, Xuefeng Xiao, Weilin Huang, Jianchao Yang

arXiv
Computer Vision
2025-06-04
Sounding that Object: Interactive Object-Aware Image to Audio Generation

Generating accurate sounds for complex audiovisual scenes is challenging, especially in the presence of multiple objects and sound sources. In this paper, we propose an interactive object-aware audio generation model that grounds sound generation in user-selected visual objects within images. Our method integrates object-centric learning into a conditional latent diffusion model, which learns to associate image regions with their corresponding sounds through multi-modal attention. At test time, our model employs image segmentation to allow users to interactively generate sounds at the object level. We theoretically validate that our attention mechanism functionally approximates test-time segmentation masks, ensuring the generated audio aligns with selected objects. Quantitative and qualitative evaluations show that our model outperforms baselines, achieving better alignment between objects and their associated sounds. Project site: https://tinglok.netlify.app/files/avobject/.

Tingle Li, Baihe Huang, Xiaobin Zhuang, Dongya Jia, Jiawei Chen, Yuping Wang, Zhuo Chen, Gopala Anumanchipalli, Yuxuan Wang

ICML 2025
Computer Vision and Pattern Recognition
2025-05-31
An All-Atom Generative Model for Designing Protein Complexes

Proteins typically exist in complexes, interacting with other proteins or biomolecules to perform their specific biological roles. Research on single-chain protein modeling has been extensively and deeply explored, with advancements seen in models like the series of ESM and AlphaFold2. Despite these developments, the study and modeling of multi-chain proteins remain largely uncharted, though they are vital for understanding biological functions. Recognizing the importance of these interactions, we introduce APM (All-Atom Protein Generative Model), a model specifically designed for modeling multi-chain proteins. By integrating atom-level information and leveraging data on multi-chain proteins, APM is capable of precisely modeling interchain interactions and designing protein complexes with binding capabilities from scratch. It also performs folding and inverse-folding tasks for multi-chain proteins. Moreover, APM demonstrates versatility in downstream applications: it achieves enhanced performance through supervised fine-tuning (SFT) while also supporting zero-shot sampling in certain tasks, achieving state-of-the-art results. We released our code at https://github.com/bytedance/apm.

Ruizhe Chen, Dongyu Xue, Xiangxin Zhou, Zaixiang Zheng, Xiangxiang Zeng, Quanquan Gu

ICML 2025
Machine Learning
2025-05-27
Designing Cyclic Peptides via Harmonic SDE with Atom-Bond Modeling

Cyclic peptides offer inherent advantages in pharmaceuticals. For example, cyclic peptides are more resistant to enzymatic hydrolysis compared to linear peptides and usually exhibit excellent stability and affinity. Although deep generative models have achieved great success in linear peptide design, several challenges prevent the development of computational methods for designing diverse types of cyclic peptides. These challenges include the scarcity of 3D structural data on target proteins and associated cyclic peptide ligands, the geometric constraints that cyclization imposes, and the involvement of non-canonical amino acids in cyclization. To address the above challenges, we introduce CPSDE, which consists of two key components: ATOMSDE, a generative structure prediction model based on harmonic SDE, and RESROUTER, a residue type predictor. Utilizing a routed sampling algorithm that alternates between these two models to iteratively update sequences and structures, CPSDE facilitates the generation of cyclic peptides. By employing explicit all-atom and bond modeling, CPSDE overcomes existing data limitations and is proficient in designing a wide variety of cyclic peptides. Our experimental results demonstrate that the cyclic peptides designed by our method exhibit reliable stability and affinity.

Xiangxin Zhou, Mingyu Li, Yi Xiao, Jiahan Li, Dongyu Xue, Zaixiang Zheng, Jianzhu Ma, Quanquan Gu

ICML 2025
Machine Learning
2025-05-27
PaSa: An LLM Agent for Comprehensive Academic Paper Search

We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholar queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4o for paraphrased queries, ChatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50, and exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision.

Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, Weinan E

ACL 2025
LLM
2025-05-25
DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.

Dongya Jia, Zhuo Chen, Jiawei Chen, Chenpeng Du, Jian Wu, Jian Cong, Xiaobin Zhuang, Chumin Li, Zhen Wei, Yuping Wang, Yuxuan Wang

ICML 2025
Audio and Speech Processing
2025-05-23
Over-Tokenized Transformer: Vocabulary is Generally Worth Scaling

Tokenization is a fundamental component of large language models (LLMs), yet its influence on model scaling and performance is not fully explored. In this paper, we introduce OverTokenized Transformers, a novel framework that decouples input and output vocabularies to improve language modeling performance. Specifically, our approach scales up input vocabularies to leverage multi-gram tokens. Through extensive experiments, we uncover a log-linear relationship between input vocabulary size and training loss, demonstrating that larger input vocabularies consistently enhance model performance, regardless of model size. Using a large input vocabulary, we achieve performance comparable to double-sized baselines with no additional cost. Our findings highlight the importance of tokenization in scaling laws and provide practical insight for tokenizer design, paving the way for more efficient and powerful LLMs.

Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min, Xun Zhou

ICML 2025
Computation and Language
1-20 of 132
Next Page
Page 1 of 7