2025-03-25
RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories
ABSTRACT
Diffusion models have achieved remarkable success across various domains. However, their slow generation speed remains a critical challenge. Existing acceleration methods, while aiming to reduce steps, often compromise sample quality, controllability, or introduce training complexities. Therefore, we propose RayFlow, a novel diffusion framework that addresses these limitations. Unlike previous methods, RayFlow guides each sample along a unique path towards an instance-specific target distribution. This method minimizes sampling steps while preserving generation diversity and stability. Furthermore, we introduce Time Sampler, an importance sampling technique to enhance training efficiency by focusing on crucial timesteps. Extensive experiments demonstrate RayFlow's superiority in generating high-quality images with improved speed, control, and training efficiency compared to existing acceleration techniques.
AUTHORS
Huiyang Shao, Xin Xia, Yuhong Yang, Yuxi Ren, Xing Wang, Xuefeng Xiao
Featured Publications
View AllSeedance 1.0: Exploring the Boundaries of Video Generation Models
Seed Vision Team
2025-06-11
SeedEdit 3.0: Fast and High-Quality Generative Image Editing
Peng Wang, Yichun Shi, Xiaochen Lian, Zhonghua Zhai, Xin Xia, Xuefeng Xiao, Weilin Huang, Jianchao Yang
2025-06-05
MMaDA: Multimodal Large Diffusion Language Models
Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, Mengdi Wang
2025-05-21