2025-02-26

Towards Semantic Equivalence of Tokenization in Multimodal LLM

ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in processing vision-language tasks. One of the crux of MLLMs lies in vision tokenization, which involves efficiently transforming input visual signals into feature representations that are most beneficial for LLMs. However, existing vision tokenizers, essential for semantic alignment between vision and language, remain problematic. Existing methods aggressively fragment visual input, corrupting the visual semantic integrity. To address this, this paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok), which groups visual features into semantic units via a dynamic clustering algorithm, flexibly determining the number of tokens based on image complexity. The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features. The proposed MLLM (Setokim) equipped with SeTok significantly demonstrates superior performance across various tasks, as evidenced by our experimental results. The project page is at this https URL[https://sqwu.top/SeTok-web/].

AUTHORS

Shengqiong Wu, Hao Fei, Xiangtai Li, Jiayi Ji, Hanwang Zhang, Tat-Seng Chua, Shuicheng Yan

Featured Publications

View All
Computer Vision

Seedream 3.0 Technical Report

Seed Vision Team

2025-04-15

LLM

Seed1.5-VL Technical Report

Seed Multimodal Team

2025-05-13

LLM

Seed-Thinking-v1.5: Advancing Superb Reasoning Models with Reinforcement Learning

Jiaze Chen, TianTian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi Wang, Xiangpeng Wei, Wenyuan Xu,Yufeng Yuan, Yu Yue, Lin Yan, Qiying Yu, Xiaochen Zuo, Chi Zhang

2025-04-10