2025-06-26

Active Reward Modeling: Adaptive Preference Labeling for Large Language Model Alignment

ABSTRACT

Building neural reward models from human preferences is a pivotal component in reinforcement learning from human feedback (RLHF) and large language model alignment research. Given the scarcity and high cost of human annotation, how to select the most informative pairs to annotate is an essential yet challenging open problem. In this work, we highlight the insight that an ideal comparison dataset for reward modeling should balance exploration of the representation space and make informative comparisons between pairs with moderate reward differences. Technically, challenges arise in quantifying the two objectives and efficiently prioritizing the comparisons to be annotated. To address this, we propose the Fisher information-based selection strategies, adapt theories from the classical experimental design literature, and apply them to the final linear layer of the deep neural network-based reward modeling tasks. Empirically, our method demonstrates remarkable performance, high computational efficiency, and stability compared to other selection methods from deep learning and classical statistical literature across multiple open-source LLMs and datasets. Further ablation studies reveal that incorporating cross-prompt comparisons in active reward modeling significantly enhances labeling efficiency, shedding light on the potential for improved annotation strategies in RLHF. Code and embeddings to reproduce all results of this paper are available at https://github.com/YunyiShen/ARM-FI/.

AUTHORS

Yunyi Shen, Hao Sun, Jean-Francois Ton

Featured Publications

View All
Computer Vision

Seedance 1.0: Exploring the Boundaries of Video Generation Models

Seed Vision Team

2025-06-11

Cluster Computing

Understanding Stragglers in Large Model Training Using What-if Analysis

Jinkun Lin, Ziheng Jiang, Zuquan Song, Sida Zhao, Menghan Yu, Zhanghan Wang, Chenyuan Wang, Zuocheng Shi, Xiang Shi, Wei Jia, Zherui Liu, Shuguang Wang, Haibin Lin, Xin Liu, Aurojit Panda, Jinyang Li

2025-05-09

Computer Vision

SeedEdit 3.0: Fast and High-Quality Generative Image Editing

Peng Wang, Yichun Shi, Xiaochen Lian, Zhonghua Zhai, Xin Xia, Xuefeng Xiao, Weilin Huang, Jianchao Yang

2025-06-05