2025-05-27
PaSa: An LLM Agent for Comprehensive Academic Paper Search
ABSTRACT
We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholar queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4o for paraphrased queries, ChatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50, and exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision.
AUTHORS
Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, Weinan E
Featured Publications
View AllSeed LiveInterpret 2.0: End-to-end Simultaneous Speech-to-speech Translation with Your Voice
Seed Speech Team
2025-07-24
GR-3 Technical Report
Seed Robotics Team
2025-07-21
Seedance 1.0: Exploring the Boundaries of Video Generation Models
Seed Vision Team
2025-06-11