Models
Seed1.6

Seed1.6

Seed1.6 integrates multimodal capabilities, with "adaptive thinking" balancing model performance with reasoning capability.

Seed1.5(Doubao-1.5-pro)

Seed1.5(Doubao-1.5-pro)

Seed1.5 demonstrates superior performance in knowledge, code generation, and reasoning tasks.

Seed Diffusion Preview

Seed Diffusion Preview

An experimental diffusion language model specialized for code generation achieves an inference speed of 2,146 token/s.

Selected Papers

Oct 22, 2025
Seed3D 1.0: From Images to High-Fidelity Simulation-Ready 3D Assets
Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from costly manual asset creation. We present Seed3D 1.0, a foundation model that generates simulation-ready 3D assets from single images, addressing the scalability challenge while maintaining physics rigor. Unlike existing 3D generation models, our system produces assets with accurate geometry, well-aligned textures, and realistic physically-based materials. These assets can be directly integrated into physics engines with minimal configuration, enabling deployment in robotic manipulation and simulation training. Beyond individual objects, the system scales to complete scene generation through assembling objects into coherent environments. By enabling scalable simulation-ready content creation, Seed3D 1.0 provides a foundation for advancing physics-based world simulators.
Jiashi Feng, Xiu Li, Jing Lin, Jiahang Liu, Gaohong Liu, Weiqiang Lou, Su Ma, Guang Shi, Qinlong Wang, Jun Wang, Zhongcong Xu, Xuanyu Yi, Zihao Yu, Jianfeng Zhang, Yifan Zhu, Rui Chen, Jinxin Chi, Zixian Du, Li Han, Lixin Huang, Kaihua Jiang, Yuhan Li, Guan Luo, Shuguang Wang, Qianyi Wu, Fan Yang, Junyang Zhang, Xuanmeng Zhang
Vision
Computer Vision and Pattern Recognition
Oct 21, 2025
A Multi-Resolution Systematically Improvable Quantum Embedding Scheme for Large-scale Surface Chemistry Calculations
Predictive simulation of surface chemistry is critical in fields from catalysis to electrochemistry and clean energy generation. Ab-initio quantum many-body methods should offer deep insights into these systems at the electronic level but are limited by their steep computational cost. Here, we build upon state-of-the-art correlated wavefunctions to reliably reach ‘gold standard’ accuracy in quantum chemistry for extended surface chemistry. Efficiently harnessing graphics processing unit acceleration along with systematically improvable multi-resolution techniques, we achieve linear computational scaling up to 392 atoms. These large-scale simulations demonstrate the importance of converging to these extended system sizes, achieving consistency between simulations with different boundary conditions for the interaction of water on a graphene surface. We provide a benchmark for this water-graphene interaction that clarifies the preference for water orientations at the graphene interface. This is extended to the adsorption of carbonaceous molecules on chemically complex surfaces, including metal oxides and metal-organic frameworks, where we consistently achieve chemical accuracy compared to experimental references. This advances the simulation of molecular adsorption on surfaces, enabling reliable and improvable first-principles modeling of such problems by ab-initio quantum many-body methods.
Zigeng Huang, Zhen Guo, Changsu Cao, Hung Q. Pham, Xuelan Wen, George H. Booth, Ji Chen & Dingshun Lv
AI for Science
AI for Science
Sep 02, 2025
PXDesign: Fast, Modular, and Accurate De Novo Design of Protein Binders
PXDesign achieves nanomolar binder hit rates of 20–73% across five of six diverse protein targets, surpassing prior methods such as AlphaProteo. This experimental success rate is enabled by advances in both binder generation and filtering. We develop both a diffusion-based generative model (PXDesign-d) and a hallucination-based approach (PXDesign-h), each showing strong in silico performance that outperforms existing models. Beyond generation, we systematically analyze confidence-based filtering and ranking strategies from multiple structure predictors, comparing their accuracy, efficiency, and complementarity on datasets spanning de novo binders and mutagenesis. Finally, we validate the full design process experimentally, achieving high hit rates and multiple nanomolar binders. To support future work and community use, we release a unified benchmarking framework at https://github.com/bytedance/PXDesignBench, provide public access to PXDesign via a webserver at https://protenix-server.com, and share all designed binder sequences at https://protenix.github.io/pxdesign.
Milong Ren, Jinyuan Sun, Jiaqi Guan, Cong Liu, Chengyue Gong, Yuzhe Wang, Lan Wang, Qixu Cai, Xinshi Chen, Wenzhi Xiao, Protenix Team
AI for Science
Molecular Biology
Jul 31, 2025
Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving
LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language. Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training through reinforcement learning. In this work, we propose \textbf{Seed-Prover}, a lemma-style whole-proof reasoning model. Seed-Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves 78.1% of formalized past IMO problems, saturates MiniF2F, and achieves over 50\% on PutnamBench, outperforming the previous state-of-the-art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine \textbf{Seed-Geometry}, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove 5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the effectiveness of formal verification with long chain-of-thought reasoning.
Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun, Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu, Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan, Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, Thomas Hanwen Zhu
LLM
LLM
Jul 24, 2025
Seed LiveInterpret 2.0: End-to-end Simultaneous Speech-to-speech Translation with Your Voice
Simultaneous Interpretation (SI) represents one of the most daunting frontiers in the translation industry, with product-level automatic systems long plagued by intractable challenges: subpar transcription and translation quality, lack of real-time speech generation, multi-speaker confusion, and translated speech inflation, especially in long-form discourses. In this study, we introduce Seed-LiveInterpret 2.0, an end-to-end SI model that delivers high-fidelity, ultra-low-latency speech-to-speech generation with voice cloning capabilities. As a fully operational product-level solution, Seed-LiveInterpret 2.0 tackles these challenges head-on through our novel duplex speech-to-speech understanding-generating framework. Experimental results demonstrate that through large-scale pretraining and reinforcement learning, the model achieves a significantly better balance between translation accuracy and latency, validated by human interpreters to exceed 70% correctness in complex scenarios. Notably, Seed-LiveInterpret 2.0 outperforms commercial SI solutions by significant margins in translation quality, while slashing the average latency of cloned speech from nearly 10 seconds to a near-real-time 3 seconds, which is around a near 70% reduction that drastically enhances practical usability.
Seed Speech Team
Speech
Speech&Audio
Mar 14, 2025
Deep Learning Sheds Light on Integer and Fractional Topological Insulators
Electronic topological phases of matter, characterized by robust boundary states derived from topologically nontrivial bulk states, are pivotal for next-generation electronic devices. However, understanding their complex quantum phases, especially at larger scales and fractional fillings with strong electron correlations, has long posed a formidable computational challenge. Here, we employ a deep learning framework to express the many-body wavefunction of topological states in twisted MoTe2 systems, where diverse topological states are observed. Leveraging neural networks, we demonstrate the ability to identify and characterize topological phases, including the integer and fractional Chern insulators as well as the Z2 topological insulators. Our deep learning approach significantly outperforms traditional methods, not only in computational efficiency but also in accuracy, enabling us to study larger systems and differentiate between competing phases such as fractional Chern insulators and charge density waves. Our predictions align closely with experimental observations, highlighting the potential of deep learning techniques to explore the rich landscape of topological and strongly correlated phenomena.
Xiang Li, Yixiao Chen, Bohao Li, Haoxiang Chen, Fengcheng Wu, Ji Chen, Weiluo Ren
AI for Science
Strongly Correlated Electrons
View more