2025-10-22

Seed3D 1.0: From Images to High-Fidelity Simulation-Ready 3D Assets

ABSTRACT

Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from costly manual asset creation. We present Seed3D 1.0, a foundation model that generates simulation-ready 3D assets from single images, addressing the scalability challenge while maintaining physics rigor. Unlike existing 3D generation models, our system produces assets with accurate geometry, well-aligned textures, and realistic physically-based materials. These assets can be directly integrated into physics engines with minimal configuration, enabling deployment in robotic manipulation and simulation training. Beyond individual objects, the system scales to complete scene generation through assembling objects into coherent environments. By enabling scalable simulation-ready content creation, Seed3D 1.0 provides a foundation for advancing physics-based world simulators.

AUTHORS

Jiashi Feng, Xiu Li, Jing Lin, Jiahang Liu, Gaohong Liu, Weiqiang Lou, Su Ma, Guang Shi, Qinlong Wang, Jun Wang, Zhongcong Xu, Xuanyu Yi, Zihao Yu, Jianfeng Zhang, Yifan Zhu, Rui Chen, Jinxin Chi, Zixian Du, Li Han, Lixin Huang, Kaihua Jiang, Yuhan Li, Guan Luo, Shuguang Wang, Qianyi Wu, Fan Yang, Junyang Zhang, Xuanmeng Zhang

Featured Publications

View All
Speech&Audio

Seed LiveInterpret 2.0: End-to-end Simultaneous Speech-to-speech Translation with Your Voice

Seed Speech Team

2025-07-24

Robotics

GR-3 Technical Report

Seed Robotics Team

2025-07-21

Computer Vision

Seedance 1.0: Exploring the Boundaries of Video Generation Models

Seed Vision Team

2025-06-11