Robotics
Seed-Robotics 团队致力于研究攻克通用智能机器人有挑战的课题,研发业界领先技术,聚焦机器人基础模型、智能感知-操作-交互方面,孵化智能机器人系统
课题方向
机器人多模态大模型
从事大规模机器人基础模型的预训练、微调和优化研究,以模型为中心,提升机器人的智能边界;探索多模态大模型前沿问题,推动在机器人上的大规模扩展,包括但不限于抓取操作、运动控制、世界建模等
Foundation Model
Multimodal
Large-scale Application
机器人强化学习
围绕机器人在深度强化学习开展前沿技术研究工作,推动最新强化学习算法在机器人上的大规模扩展
Reinforcement Learning
Large-scale Application
机器人数据算法
突破机器人的数据瓶颈,探索数据采集新硬件与新系统,探索真机、仿真等机器人数据生成方式,参与全链路数据闭环建设,构建自动化、大规模的机器人数据引擎
Data Algorithms
Automated
Data Engine

精选论文

2025.07.21
GR-3 Technical Report
We report our recent progress towards building generalist robot policies, the development of GR-3. GR-3 is a large-scale vision-language-action (VLA) model. It showcases exceptional capabilities in generalizing to novel objects, environments, and instructions involving abstract concepts. Furthermore, it can be efficiently fine-tuned with minimal human trajectory data, enabling rapid and cost-effective adaptation to new settings. GR-3 also excels in handling long-horizon and dexterous tasks, including those requiring bi-manual manipulation and mobile movement, showcasing robust and reliable performance. These capabilities are achieved through a multi-faceted training recipe that includes co-training with web-scale vision-language data, efficient fine-tuning from human trajectory data collected via VR devices, and effective imitation learning with robot trajectory data. In addition, we introduce ByteMini, a versatile bi-manual mobile robot designed with exceptional flexibility and reliability, capable of accomplishing a wide range of tasks when integrated with GR-3. Through extensive real-world experiments, we show GR-3 surpasses the state-of-the-art baseline method, π0, on a wide variety of challenging tasks. We hope GR-3 can serve as a step towards building generalist robots capable of assisting humans in daily life.
Seed Robotics Team
Robotics
2025.07.04
Dexterous Teleoperation of 20-DoF ByteDexter Hand via Human Motion Retargeting
Replicating human--level dexterity remains a fundamental robotics challenge, requiring integrated solutions from mechatronic design to the control of high degree--of--freedom (DoF) robotic hands. While imitation learning shows promise in transferring human dexterity to robots, the efficacy of trained policies relies on the quality of human demonstration data. We bridge this gap with a hand--arm teleoperation system featuring: (1) a 20--DoF linkage--driven anthropomorphic robotic hand for biomimetic dexterity, and (2) an optimization--based motion retargeting for real--time, high--fidelity reproduction of intricate human hand motions and seamless hand--arm coordination. We validate the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks and a long--horizon task requiring the organization of a cluttered makeup table randomly populated with nine objects. Experimental results demonstrate its intuitive teleoperation interface with real--time control and the ability to generate high--quality demonstration data. Please refer to the accompanying video for further details.
Ruoshi Wen, Jiajun Zhang, Guangzeng Chen, Zhongren Cui, Min Du, Yang Gou, Zhigang Han, Junkai Hu, Liqun Huang, Hao Niu, Wei Xu, Haoxiang Zhang, Zhengming Zhu, Hang Li, Zeyu Ren
Robotics
2025.06.06
Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning
Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
Sheng Chen, Peiyu He, Jiaxin Hu, Ziyang Liu, Yansheng Wang, Tao Xu, Chi Zhang, Chongchong Zhang, Chao An, Shiyu Cai, Duo Cao, Kangping Chen, Shuai Chu, Tianwei Chu, Mingdi Dan, Min Du, Weiwei Fang, Pengyou Fu, Junkai Hu, Xiaowei Jiang, Zhaodi Jiang, Fuxuan Li, Jun Li, Minghui Li, Mingyao Li, Yanchang Li, Zhibin Li, Guangming Liu, Kairui Liu, Lihao Liu, Weizhi Liu, Xiaoshun Liu, Yufei Liu, Yunfei Liu, Qiang Lu, Yuanfei Luo, Xiang Lv, Hongying Ma, Sai Ma, Lingxian Mi, Sha Sa, Hongxiang Shu, Lei Tian, Chengzhi Wang, Jiayu Wang, Kaijie Wang, Qingyi Wang, Renwen Wang, Tao Wang, Wei Wang, Xirui Wang, Chao Wei, Xuguang Wei, Zijun Xia, Zhaohao Xiao, Tingshuai Yan, Liyan Yang, Yifan Yang, Zhikai Yang, Zhong Yin, Li Yuan, Liuchun Yuan, Chi Zhang, Jinyang Zhang, Junhui Zhang, Linge Zhang, Zhenyi Zhang, Zheyu Zhang, Dongjie Zhu, Hang Li, Yangang Zhang
Robotics
查看更多论文
技术能力展示
GR-3
GR-3 是一个大规模的视觉 - 语言 - 动作(VLA)模型。它对新物体、新环境以及含抽象概念的新指令展现出较好的泛化能力。GR-3 支持少量人类轨迹数据的高效微调,可快速且经济地适应新任务。同时,在处理长周期和灵巧性任务上,也展现出稳健、可靠的性能。
Astra
Astra 是一种创新的双模型架构,包含 Astra-Global 和 Astra-Local 两个模块,来解决移动机器人导航面临目标定位、自我定位与路径规划三大核心挑战。通过两大子模型,在环境理解感知与实时规划决策之间建立通路,为下一代智能体的“通用导航能力”打下基础。
ByteDexter
ByteDexter 作为自研高主动自由度灵巧手 (21DoF),搭载了高灵敏度触觉传感器,搭配灵巧手遥操作系统,能够实现复杂人类手部动作的实时高保真复现,以及手&臂协同的无缝衔接。