2025-06-11

Seedance 1.0: Exploring the Boundaries of Video Generation Models

ABSTRACT

Notable advances in diffusion modeling have propelled rapid improvements in video generation, yet current foundational model still confront critical challenges in synergistically balancing prompt following, motion plausibility, and visual quality. In this report, we introduce Seedance 1.0, a high-performance and inference-efficient video foundation generation model that integrates several core technical improvements: (i) multi-source data curation augmented with precision and meaningful video captioning, enabling comprehensive learning across diverse scenarios; (ii) an efficient pre-training paradigm that enables multiple features or functions such as interleaved multimodal positional encoding, native multi-shot generation capacity, and multi-task modeling; (iii) carefully-designed post-training optimization leveraging fine-grained supervised fine-tuning, video-specific RLHF with multi-dimensional reward mechanisms for considerable performance improvements; (iv) excellent model acceleration achieving 10× inference speedup through multi- stage distillation strategies and system-level optimizations. Seedance 1.0 can generate a 5-second video at 1080p resolution only with 41.4 seconds. Compared to state-of-the-art video generation models, Seedance 1.0 stands out with high-quality and fast video generation with superior spatiotemporal fluidity with structural stability, precise instruction adherence in complex multi-subject contexts, native multi-shot narrative coherence with consistent subject representation, and ultra-fast inference.

AUTHORS

Seed Vision Team

精选研究

查看更多
Computer Vision

SeedEdit 3.0: Fast and High-Quality Generative Image Editing

Peng Wang, Yichun Shi, Xiaochen Lian, Zhonghua Zhai, Xin Xia, Xuefeng Xiao, Weilin Huang, Jianchao Yang

2025-06-05

Computer Vision

MMaDA: Multimodal Large Diffusion Language Models

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, Mengdi Wang

2025-05-21

Computer Vision

Emerging Properties in Unified Multimodal Pretraining

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu, Xiaonan Nie, Ziang Song, Guang Shi, Haoqi Fan

2025-05-20